MODEL QUESTION

MANMOHAN TECHNICAL UNIVERSITY

OFFICE OF THE CONTROLLER OF EXAMINATIONS 2080. Asar

2080, Asar				
Fa Pr	vel: Bachelor culty: School of Engineering ogram: CIVIL oject: ENGINEERING MECHANICS		Year/P F.M.: 50 P.M.: 20 Time: 3	0
Group A (Attempt ALL Questions:)			$[10 \times 1 = 10]$	
	 Choose one answer out of four Use black ball pen for shading of Sheet which you have provided No mark will be awarded for combined which of the following s is a branch a. Statics and Kinetics b. Statics & Kinematics 	only one circle for corred. d. utting, erasing, over wri	ting and multiple circles sh	ading
2)	The center of mass of a system of pb. Position of Particle c. Masses of particle	b. Re	d upon lative distance between pa ce acting on particle	articles
3)	If P>Q and P and Q are acting along a same straight line, but I opposite direction, the resultant is a. P+Q b. P/Q c. P-Q d. Q/P			
	If no force is applied to a moving o a. Tension b. Momentum	c. Impulse	d. Friction	٩
٦)	DKI (Degree of Kinetic Indeterminacy) of given figure is (Fig:1) a. 2 b. 6 c. 8 d. 9			
6)	If m>2j-r, Where m= no. of members a. Perfect b. Deficient	er, j= no. of joint, r= no. c. Redundant		Fig:-1
7)	The center of Gravity of Semicircul distance of from base of diam a. $r/(2\pi)$ b. $4r/(3\pi)$			ndius at a
8)	If we use link support in a structura a. 1 b. 2	al system, the how man c. 0 d. 4	y unknowns will we have?	
9)	what will the equilibrium will be achieved			
	 a. The three axis of body weight direction 	b. The ground	c. The rope direction	d. The
10) The moment at A is (Fig:-2)				3 Kn/m

d. 6 kN-m

b. 9 kN-m c. 10 kN-m

b. 12 kN-m

MODEL QUESTION

Group B (Attempt any eight questions)

[8*2=16]

- 1. State and Prove Varignon's Theorem.
- 2. Explain High-tensioned friction grip bolts and its free body Diagram.
- 3. Define rigid body. Explain the transmissibility of force and its limitation.
- 4. State and prove parallel axis theorem for moment of inertia.
- 5. What are the equation of Static Equilibrium for 2-D and 3-d analysis of Particle and Rigid Body?
- 6. Differentiate between Mechanism and Structure with Sketch.
- 7. Explain about truss and its types.
- 8. Explain free body diagram and its importance.
- 9. Determine Degree of Kinematic Indeterminacy (DKI) of Given Figure-3

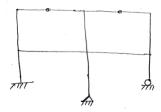


Figure-3

Group C (Attempt all questions)

10. Determine the resultant force and Moment about point O (Figure-4) [4]

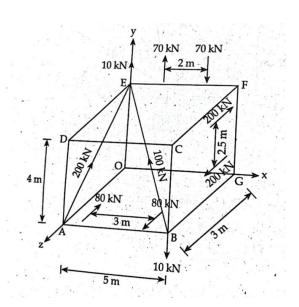


Figure-4

11. Determine the centroid of the hatched area by Direct Integration Method. (Figure-5)

[4]

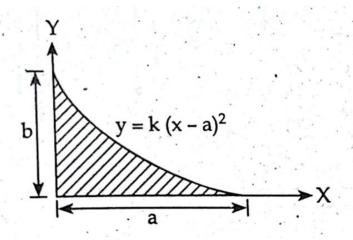


Figure-5

12. a. Draw the axial force, shear force and bending moment diagram of the given frame. (Figure-6) [8]

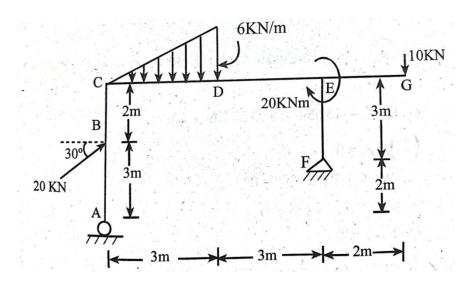


Figure-6

[4]

[4]

13. Determine force developed in member force of given truss (Figure-7)

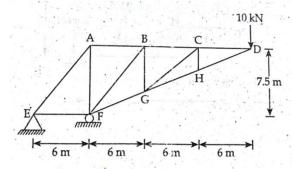


Figure-7

14. Determine the Magnitude, direction and position of resultant force . (Figure-8)

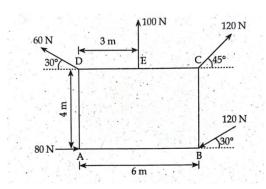
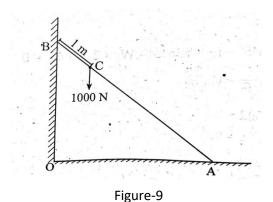



Figure-8 **Or**

A ladder shown in figure-9 is 4 m long and is supported by a horizontal floor and a vertical wall, the coefficient of friction at wall is 0.3 and floor is 0.45. The weight of ladder is 300N . The ladder supports a vertical load 1000N at c. Determine the reaction at A and B and Compute the least values of θ at which ladder may be placed without slipping to right. [4]

***** All the Best ***